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Abstract
The equation rot �f (x)+α(x) �f (x) = 0 is considered, where α is a nonvanishing
complex valued function. Its quaternionic reformulation is obtained which is
used for constructing integral representations for solutions in the case when
α is a function of one variable. We show that in this case the solution of
the considered equation reduces to the solution of three different Schrödinger
equations with potentials depending on one variable.

PACS numbers: 02.30.Em, 02.30.Jr

1. Introduction

Solutions of the equation

rot �f (x) + α(x) �f (x) = 0 (1)

where α is a complex valued function of space coordinates x = (x1, x2, x3) are known as
Beltrami fields and appear in different branches of modern physics (see, e.g., [1, 4–6, 12,
15, 16]). When α is constant much information about (1) is available, including integral
representations for the solutions (see, e.g., [11, 12]), solutions of some boundary value
problems (see, e.g., [1, 11, 13]) and spectral problems [14]. The situation is clearly much
more complicated when α is a function.

In this work we apply a quaternionic approach for the analysis of (1) and study in detail
the case when α is a complex valued function of one coordinate: α = α(x1). The main result
consists in the reduction of the problem of obtaining solutions of (1) to the solution of some
Schrödinger equations, the theory of which is better developed. Based on the solutions of
three different Schrödinger equations we obtain an integral representation for solutions of (1).

2. Preliminaries

We will consider the algebra of complex quaternions which have the form q = ∑3
k=0 qkik

where {qk} ⊂ C, i0 is the unit and {ik| k = 1, 2, 3} are the quaternionic imaginary units, that
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is the standard basis elements possessing the following properties:

i20 = i0 = −i2k i0ik = iki0 = ik k = 1, 2, 3
i1i2 = −i2i1 = i3 i2i3 = −i3i2 = i1 i3i1 = −i1i3 = i2.

We denote the imaginary unit in C by i as usual. By definition i commutes with ik, k = 0, 3.
The vectorial representation of a complex quaternion will be used. Namely, each complex

quaternion q is a sum of a scalar q0 and of a vector �q:

q = Sc(q) + Vec(q) = q0 + �q
where �q = ∑3

k=1 qkik. The purely vectorial complex quaternions (Sc(q) = 0) are identified
with vectors from C3.

By Mp we denote the operator of multiplication by the complex quaternion p from the
right-hand side: Mpq = q · p.

We will intensively use the fact that the algebra of complex quaternions contains a subset
of zero divisors which are characterized by the equality q2

0 = �q2, where �q2 = −〈�q, �q〉, or
equivalently q2 = 2q0q . We see that if q is a zero divisor and q0 = 1/2 then q is an idempotent.
More information on the structure of the algebra of complex quaternions can be found for
example in [11].

Let f be a complex quaternion valued differentiable function of x = (x1, x2, x3). Denote

Df =
3∑
k=1

ik
∂

∂xk
f.

This expression can be rewritten in vector form as follows:

Df = −div �f + gradf0 + rot �f .
That is, Sc(Df ) = −div �f and Vec(Df ) = gradf0 + rot �f .

Let us note two properties of the operator D. It factorizes the Laplace operator: D2 = −�.
For a scalar function φ we have(

D +
gradφ

φ

)
f = φ−1D(φf ). (2)

3. Quaternionic reformulation of (1)

If α is constant then (1) is equivalent to the equation

(D + α) �f = 0. (3)

The same is not true in the case when α is a function because from (1) we obtain that

α div �f + 〈gradα, �f 〉 = 0 (4)

but the scalar part of (3) gives us div �f = 0.
Nevertheless (1) can be rewritten in a quite convenient quaternionic form as is shown in

the following statement. We assume that α is a nonvanishing function and fix a branch of
√
α,

for example the positive on the positive real semiaxis.

Proposition 1. A C3-valued function �f is a solution of (1) if and only if the purely vectorial
complex quaternionic function �g = √

α �f is a solution of the equation

(D +Mα+ �γ )�g = 0 (5)

where �γ = grad
√
α√

α
.

Proof. Consider the equation

(D + α + �γ +M �γ ) �f = 0. (6)
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It is easy to see that its vector part coincides with (1) and the scalar part gives us

div �f + 2

〈
grad

√
α√

α
, �f
〉

= 0

which is equivalent to (4). Thus (6) is equivalent to (1).
Now, using (2) we rewrite (6) in the following form:

1√
α
D(

√
α �f ) + α �f + �f �γ = 0.

Multiplying this equation by
√
α and introducing the notation �g = √

α �f we obtain the required
fact. �

Remark 2. The operator D + Mα+ �γ is closely related to the classical Dirac operator. For
example, let �γ (x) = −i(ω+φel(x))i1 − (m− iφsc(x))i2. Then the equation (D +Mα+ �γ )g = 0
is equivalent (see [7–9]) to the equation(

iωγ0 +
3∑
k=1

γk
∂

∂xk
+ im + iγ0γ5α(x) + φsc(x) + iγ0φel(x)

)
�(x) = 0

where γk are standard γ -matrices, α is called the pseudoscalar potential, φsc is the scalar
potential and φel is the electric potential.

Remark 3. The Maxwell system

div(ε(x) �E(x)) = 0 and rot �E(x) = 0

is equivalent to the equation

(D +M �ε(x))E(x) = 0

where E = √
ε �E and �ε = grad

√
ε√

ε
(see [10]).

4. α is a function of one variable

Assume that α = α(x1). According to proposition 1 equation (1) is equivalent to the
quaternionic equation(

D +M(α+ α′
2α i1)

) �g = 0.

Thus we are interested in solutions of the equation(
D +M(α+γ i1)

)
g = 0 (7)

where α and γ are complex valued functions of x1 and in general we will consider not only
purely vectorial solutions of (7) but complete complex quaternions g.

Denote P± = 1
2M

(1±ii1).

Proposition 4.

1. The following equality is true

D +Mα+γ i1 = P +(D +M(γ+iα)i1) + P−(D +M(γ−iα)i1). (8)

2. Any solution of (7) has the form g = P +v + P−w, where v is a solution of the equation

(D +M(γ+iα)i1)v = 0

and w is a solution of the equation

(D +M(γ−iα)i1)w = 0.
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Proof. In order to verify (8) it is sufficient to note that

α = P +α + P−α = 1
2 (α(1 + ii1) + α(1 − ii1)) = 1

2 (iαi1(1 + ii1)− iαi1(1 − ii1)).

The second statement of the proposition follows from the fact that P + and P− commute with
the operatorsD +M(γ+iα)i1 andD +M(γ−iα)i1 . �

Thus the problem reduces to the study of the equation

D �βu = 0

whereD �β = D +Mβ(x1)i1 .
Using the factorization of the Schrödinger operator proposed in [2, 3] we obtain the

following.

Proposition 5. Let µ = β ′ + β2 and ν = −β ′ + β2. Then for a scalar function ϕ we have

D �βD−�βϕ = (D +Mβ(x1)i1)(D −Mβ(x1)i1)ϕ = (−� + µ)ϕ (9)

and

D−�βD �βϕ = (−� + ν)ϕ. (10)

Proof.

(D +Mβi1)(D −Mβi1)ϕ = −�ϕ − (Dϕ)βi1 − ϕD(βi1) + (Dϕ)βi1 + β2ϕ

= −�ϕ + (β ′ + β2)ϕ = (−� + µ)ϕ.

Equality (10) is verified in the same way. �

Corollary 6. Let ϕ be a fundamental solution of the operator −� + µ andψ be a fundamental
solution of the operator −� + ν. Then K �β = D−�βϕ is a fundamental solution of D �β:
D �βK �β = δ and K−�β = D �βψ is a fundamental solution of D−�β: D−�βK−�β = δ.

Usually the fundamental solution of a differential operator can be used for constructing
the corresponding right inverse operator. For example, if ϕ is a fundamental solution of the
operator −� + µ then the convolution

∫
�
ϕ(x − y)f (y) dy defines a right inverse operator

corresponding to −�+µ at least in a bounded domain� and in an appropriate functional space.
With fundamental solutions of the operators D �β and D−�β the situation is more complicated.
The operator D is applied from the left and the multiplication by βi1 is from the right. Hence a
simple convolution with a fundamental solution does not give us a right inverse operator. The
solution consists of one additional step. Having fundamental solutions for D �β and D−�β and
using the operators P + and P− we can also construct fundamental solutions for the operators
D−iβ = D − iβ(x1) and Diβ = D + iβ(x1). Here the point is that the multiplicative terms
are scalars and consequently the left-sided convolutions with fundamental solutions of these
operators will give us corresponding right inverse operators. Then using P + and P− once
more we transform them into right inverse operators for D �β andD−�β .

By analogy with proposition 1 we note that

D − iβ = P +(D +Mβi1) + P−(D −Mβi1) (11)

and

D + iβ = P +(D −Mβi1) + P−(D +Mβi1). (12)

Let K �β be a fundamental solution for D + Mβi1 and K−�β be a fundamental solution for
D −Mβi1 . Then from (11) we obtain that

K−iβ = P +K �β + P−K−�β (13)
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is a fundamental solution of the operatorD−iβ and from (12) we obtain that

Kiβ = P +K−�β + P−K �β
is a fundamental solution of the operatorDiβ .

Let� be a bounded domain in R3 with a closed Liapunov boundary�. Let T±iβ andK±iβ

denote the operators acting on complex quaternion valued functions by the following rules:

T±iβg(x) =
∫
�

K±iβ(x − y)g(y) dy x ∈ R
3

and

K±iβg(x) = −
∫
�

K±iβ(x − y)�n(y)g(y) d�y x ∈ R
3\�

where �n is the outward unit normal �n = ∑3
k=1 nkik.

Theorem 7 (Borel–Pompeiu formula). Let g be a complex quaternion valued function with
components belonging to C1(�) ∩ C(�). Then

K±iβg(x) + T±iβD±iβg(x) = g(x) x ∈ �.

Proof. This proof is completely analogous to that from [11, p 68] (where it was given for a
constant β) and is based on a quaternionic version of the Stokes formula. �

From this theorem two corollaries follow immediately (compare with [11, pp 70, 71]).

Theorem 8 (Cauchy’s integral formula). Under the conditions of theorem 7, let g be a
solution of the equation Diβg = 0 or D−iβg = 0 in �. Then g(x) = Kiβg(x) or g(x) =
K−iβg(x), x ∈ � respectively.

Theorem 9 (Right inverse operator). Under the conditions of theorem 7 the following equality
holds:

D±iβT±iβg(x) = g(x) x ∈ �.
Now let us turn back to the operatorD �β . From (11) and (12) we have

D �β = P +D−iβ + P−Diβ.

Introducing the notation

T �β = P +T−iβ + P−Tiβ (14)

and

K �β = P +K−iβ + P−Kiβ (15)

we obtain similar facts as those formulated in theorems 7–9.

Theorem 10. Let � be a bounded domain in R3 with a closed Liapunov boundary
�, g ∈ C1(�) ∩ C(�). Then

K �βg(x) + T �βD �βg(x) = g(x) x ∈ �
D �βT �βg(x) = g(x) x ∈ �

and if additionallyD �βg = 0 in � then

g(x) = K �βg(x) x ∈ �. (16)
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Let us give a more explicit form of the equality (16):

g(x) = −1

4

∫
�

{((Dϕ(x − y)− β(x1 − y1)ϕ(x − y)i1)(1 + ii1)

+ (Dψ(x − y) + β(x1 − y1)ψ(x − y)i1)(1 − ii1))�n(y)g(y)(1 + ii1)

+ ((Dψ(x − y) + β(x1 − y1)ψ(x − y)i1)(1 + ii1)

+ (Dϕ(x − y)− β(x1 − y1)ϕ(x − y)i1)(1 − ii1))�n(y)g(y)(1 − ii1)} d�y

where ϕ is a fundamental solution of the operator −� +µ and ψ is a fundamental solution of
the operator −� + ν.

For the operator D + Mα+γ i1 from (8) we obtain the corresponding Cauchy integral
operator and the T-operator in the form

Kα+γ i1 = P +K(γ+iα)i1 + P−K(γ−iα)i1

and

Tα+γ i1 = P +T(γ+iα)i1 + P−T(γ−iα)i1

where according to (15) and (14):

K(γ+iα)i1 = P +Kα−iγ + P−K−(α−iγ )

T(γ+iα)i1 = P +Tα−iγ + P−T−(α−iγ )

K(γ−iα)i1 = P +K−(α+iγ ) + P−Kα+iγ

T(γ−iα)i1 = P +T−(α+iγ ) + P−Tα+iγ .

Thus,

Kα+γ i1 = P +Kα−iγ + P−Kα+iγ

and

Tα+γ i1 = P +Tα−iγ + P−Tα+iγ .

For the operatorDα+γ i1 = D +Mα+γ i1 together with these two operators we obtain again
all facts from theorem 10.

Theorem 11. Let � be a bounded domain in R3 with a closed Liapunov boundary
�, g ∈ C1(�) ∩ C(�). Then

Kα+γ i1g(x) + Tα+γ i1Dα+γ i1g(x) = g(x) x ∈ �
Dα+γ i1Tα+γ i1g(x) = g(x) x ∈ �

and if additionallyDα+γ i1g = 0 in � then

g(x) = Kα+γ i1g(x) x ∈ �.

Finally, let us obtain similar results for solutions of (1) when α = α(x1). Note that
according to our construction (equality (13) and proposition 5)

Kα−iγ = P +K(γ+iα)i1 + P−K−(γ+iα)i1

= P +(D − (γ + iα)i1)ϕ1 + P−(D + (γ + iα)i1)ψ1

where ϕ1 is a fundamental solution of −� + µ1 with µ1 = γ ′ + iα′ + (γ + iα)2 and ψ1 is a
fundamental solution of −� + ν1 with ν1 = −γ ′ − iα′ + (γ + iα)2. Analogously,

Kα+iγ = P +K−(γ−iα)i1 + P−K(γ−iα)i1

= P +(D + (γ − iα)i1)ϕ2 + P−(D − (γ − iα)i1)ψ2
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where ϕ2 is a fundamental solution of −� + µ2 with µ2 = −γ ′ + iα′ + (γ − iα)2 and ψ2 is a
fundamental solution of −� + ν2 with ν2 = γ ′ − iα′ + (γ − iα)2.

Turning back to equation (1) we recall that γ = α′/(2α). Substituting this expression
into the expressions for µ1, ν1, µ2 and ν2 we find that

µ1 = 1

2

α′′

α
− 1

4

(α′)2

α2
+ 2iα′ − α2

ν1 = µ2 = −1

2

α′′

α
+

3

4

(α′)2

α2
− α2

and

ν2 = 1

2

α′′

α
− 1

4

(α′)2

α2
− 2iα′ − α2.

Thus in this particular case we have only three different Schrödinger operators. Moreover,
if α is a real function then ν2 is a complex conjugate of µ1 and hence having solved one
Schrödinger equation the solution of the other can be obtained immediately.

Assuming that the fundamental solutions of the three Schrödinger operators are given we
construct the operatorKα+γ i1 and as a corollary of theorem 11 we obtain the following integral
representation for solutions of (1).

Theorem 12. Let α = α(x1) be a complex valued twice differentiable function, � be a
bounded domain in R3 with a closed Liapunov boundary �, �f ∈ C1(�) ∩ C(�) and let �f
satisfy (1). Then

�f (x) = 1√
α
Kα+γ i1(

√
α �f )(x) x ∈ �

where γ = α′/(2α).

This theorem allows us to reconstruct a solution of (1) in a domain � by its boundary
values on � = ∂� and hence represents a first necessary step for solving boundary value
problems for equation (1) in the case when α is a function.
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